This work presents a novel approach for recognizing facial expressions by incorporating class-mean Gabor responses of sampled images of human facial expressions and kernel principal component analysis (kernel PCA) with fractional polynomial power models. A mean vector of features is obtained with Gabor filters from a class of images instead of the more common method in which features are obtained from individual images. The computational cost of spatial convolutions on mean features of a class is less than the same type of convolutions with individual features. The dimensionality of mean features from Gabor filters is further reduced by using a kernel PCA technique with polynomial kernels. The kernel PCA technique is extended to use fractional power polynomial models for facial expression recognition. The proposed approach has the advantage of doing fewer projections than other facial expression recognition approaches that use traditional kernel PCA models. The proposed approach of class- mean Gabor responses has higher accuracy than existing systems that use the kernel PCA technique with class-mean image responses only.
Die bei uns gelisteten Preise basieren auf Angaben der gelisteten Händler zum Zeitpunkt unserer Datenabfrage. Diese erfolgt einmal täglich. Von diesem Zeitpunkt bis jetzt können sich die Preise bei den einzelnen Händlern jedoch geändert haben. Bitte prüfen sie auf der Zielseite die endgültigen Preise.
Die Sortierung auf unserer Seite erfolgt nach dem besten Preis oder nach bester Relevanz für Suchbegriffe (je nach Auswahl).
Für manche Artikel bekommen wir beim Kauf über die verlinkte Seite eine Provision gezahlt. Ob es eine Provision gibt und wie hoch diese ausfällt, hat keinen Einfluß auf die Suchergebnisse oder deren Sortierung.
Unser Preisvergleich listet nicht alle Onlineshops. Möglicherweise gibt es auf anderen bei uns nicht gelisteten Shops günstigere Preise oder eine andere Auswahl an Angeboten.
Versandkosten sind in den angezeigten Preisen und der Sortierung nicht inkludiert.
* - Angaben ohne Gewähr. Preise und Versandkosten können sich zwischenzeitlich geändert haben. Bitte prüfen sie vor dem Kauf auf der jeweiligen Seite, ob die Preise sowie Versandkosten noch aktuell sind.