Mathematische Grundlagen für Machine und Deep LearningUmfassende Behandlung zeitgemäßer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale NetzeZukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial NetworksDeep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning.In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt.In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf.Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt.Teil I: Angewandte Mathematik und Grundlagen für das Machine LearningLineare AlgebraWahrscheinlichkeits- und InformationstheorieBayessche StatistikNumerische BerechnungTeil II: Deep-Learning-VerfahrenTiefe Feedforward-NetzeRegularisierungOptimierung beim Trainieren tiefer ModelleConvolutional Neural NetworksSequenzmodellierung für Rekurrente und Rekursive NetzePraxisorientierte MethodologieAnwendungen: Computer Vision, Spracherkennung, Verarbeitung natürlicher SpracheTeil III: Deep-Learning-ForschungLineare FaktorenmodelleAutoencoderRepresentation LearningProbabilistische graphische ModelleMonte-Carlo-VerfahrenDie PartitionsfunktionApproximative InferenzTiefe generative Modelle wie Restricted Boltzmann Machines, Deep-Belief-Netze, Gerichtete Generative Netze, Variational Autoencoder u.v.m.
Die bei uns gelisteten Preise basieren auf Angaben der gelisteten Händler zum Zeitpunkt unserer Datenabfrage. Diese erfolgt einmal täglich. Von diesem Zeitpunkt bis jetzt können sich die Preise bei den einzelnen Händlern jedoch geändert haben. Bitte prüfen sie auf der Zielseite die endgültigen Preise.
Die Sortierung auf unserer Seite erfolgt nach dem besten Preis oder nach bester Relevanz für Suchbegriffe (je nach Auswahl).
Für manche Artikel bekommen wir beim Kauf über die verlinkte Seite eine Provision gezahlt. Ob es eine Provision gibt und wie hoch diese ausfällt, hat keinen Einfluß auf die Suchergebnisse oder deren Sortierung.
Unser Preisvergleich listet nicht alle Onlineshops. Möglicherweise gibt es auf anderen bei uns nicht gelisteten Shops günstigere Preise oder eine andere Auswahl an Angeboten.
Versandkosten sind in den angezeigten Preisen und der Sortierung nicht inkludiert.
* - Angaben ohne Gewähr. Preise und Versandkosten können sich zwischenzeitlich geändert haben. Bitte prüfen sie vor dem Kauf auf der jeweiligen Seite, ob die Preise sowie Versandkosten noch aktuell sind.