Deep Reinforcement Learning Hands-On - Third Edition
Maxim Lapan delivers intuitive explanations and insights into complex reinforcement learning (RL) concepts, starting from the basics of RL on simple environments and tasks to modern, state-of-the-art methods Purchase of the print or Kindle book includes a free PDF eBook Free with your book: DRM-free PDF version + access to Packt‘s next-gen Reader* Key Features: - Learn with concise explanations, modern libraries, and diverse applications from games to stock trading and web navigation - Develop deep RL models, improve their stability, and efficiently solve complex environments - New content on RL from human feedback (RLHF), MuZero, and transformers Book Description: Start your journey into reinforcement learning (RL) and reward yourself with the third edition of Deep Reinforcement Learning Hands-On. This book takes you through the basics of RL to more advanced concepts with the help of various applications, including game playing, discrete optimization, stock trading, and web browser navigation. By walking you through landmark research papers in the fi eld, this deep RL book will equip you with practical knowledge of RL and the theoretical foundation to understand and implement most modern RL papers. The book retains its approach of providing concise and easy-to-follow explanations from the previous editions. You‘ll work through practical and diverse examples, from grid environments and games to stock trading and RL agents in web environments, to give you a well-rounded understanding of RL, its capabilities, and its use cases. You‘ll learn about key topics, such as deep Q-networks (DQNs), policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. If you want to learn about RL through a practical approach using OpenAI Gym and PyTorch, concise explanations, and the incremental development of topics, then Deep Reinforcement Learning Hands-On, Third Edition, is your ideal companion *Email sign-up and proof of purchase required What You Will Learn: - Stay on the cutting edge with new content on MuZero, RL with human feedback, and LLMs - Evaluate RL methods, including cross-entropy, DQN, actor-critic, TRPO, PPO, DDPG, and D4PG - Implement RL algorithms using PyTorch and modern RL libraries - Build and train deep Q-networks to solve complex tasks in Atari environments - Speed up RL models using algorithmic and engineering approaches - Leverage advanced techniques like proximal policy optimization (PPO) for more stable training Who this book is for: This book is ideal for machine learning engineers, software engineers, and data scientists looking to learn and apply deep reinforcement learning in practice. It assumes familiarity with Python, calculus, and machine learning concepts. With practical examples and high-level overviews, it‘s also suitable for experienced professionals looking to deepen their understanding of advanced deep RL methods and apply them across industries, such as gaming and finance Table of Contents - What Is Reinforcement Learning? - OpenAI Gym - Deep Learning with PyTorch - The Cross-Entropy Method - Tabular Learning and the Bellman Equation - Deep Q-Networks - Higher-Level RL Libraries - DQN Extensions - Ways to Speed up RL - Stocks Trading Using RL - Policy Gradients - an Alternative - Actor-Critic Methods - A2C and A3C - The TextWorld Environment - Web Navigation - Continuous Action Space - Trust Regions - PPO, TRPO, ACKTR, and SAC - Black-Box Optimization in RL - Advanced Exploration - RL with Human Feedback (N.B. Please use the Read Sample option to see further chapters)
Die bei uns gelisteten Preise basieren auf Angaben der gelisteten Händler zum Zeitpunkt unserer Datenabfrage. Diese erfolgt einmal täglich. Von diesem Zeitpunkt bis jetzt können sich die Preise bei den einzelnen Händlern jedoch geändert haben. Bitte prüfen sie auf der Zielseite die endgültigen Preise.
Die Sortierung auf unserer Seite erfolgt nach dem besten Preis oder nach bester Relevanz für Suchbegriffe (je nach Auswahl).
Für manche Artikel bekommen wir beim Kauf über die verlinkte Seite eine Provision gezahlt. Ob es eine Provision gibt und wie hoch diese ausfällt, hat keinen Einfluß auf die Suchergebnisse oder deren Sortierung.
Unser Preisvergleich listet nicht alle Onlineshops. Möglicherweise gibt es auf anderen bei uns nicht gelisteten Shops günstigere Preise oder eine andere Auswahl an Angeboten.
Versandkosten sind in den angezeigten Preisen und der Sortierung nicht inkludiert.
* - Angaben ohne Gewähr. Preise und Versandkosten können sich zwischenzeitlich geändert haben. Bitte prüfen sie vor dem Kauf auf der jeweiligen Seite, ob die Preise sowie Versandkosten noch aktuell sind.