Handlungsorientierte Zugänge zum Funktionsbegriff und Möglichkeiten zur Förderung des funktionalen Denkens
Examensarbeit aus dem Jahr 2008 im Fachbereich Didaktik - Mathematik, Note: 1,3, Europa-Universität Flensburg (ehem. Universität Flensburg) (Institut für Mathematik und ihre Didaktik), Veranstaltung: Examensarbeit in Mathematik, Sprache: Deutsch, Abstract: Der Begriff der Funktion ist einer der Kernbegriffe der modernen Mathematik. Kaum ein Gebiet der Mathematik ist gänzlich frei von den Erscheinungsformen des Funktionsbegriffs. Deshalb ist es in hohem Maße bedeutend, den Funktionsbegriff treffend und sorgfältig in den Schulen einzuführen. Es stellt sich dabei insbesondere die Frage, wie die Entwicklung des funktionalen Denkens am geeignetsten gefördert und unterstützt wird und die latenten Chancen für die Herausarbeitung einer angemessenen Vorstellung und eines sicheren Verständnisses des Funktionsbegriffs tatsächlich wahrgenommen werden können. Dabei ist es wichtig, die Schüler auf der einen Seite nicht zu früh mit formalen Ausdrucksweisen zu überfordern. Andererseits ist es ja gerade das Geschick der Mathematik, Aussagen bzw. Gesetzmäßigkeiten möglichst prägnant in ihrer eigenen Sprache wiederzugeben. Nicht zuletzt deshalb wird oft auch von der Schönheit der Mathematik gesprochen, in der viele eine Kunst sehen und sie als eine ästhetische Disziplin bezeichnen. [...] Wenngleich die Behandlung von Funktionen im Mathematikunterricht, oder genauer der Funktionsbegriffserwerb und dessen Festigung, der Kern dieser Arbeit ist, ist es zunächst sinnvoll, das handlungsorientierte Unterrichten allgemein durch ihre Eigenschaften zu bestimmen, da dieses Unterrichtskonzept hierbei eine bedeutende Rolle spielt. Das Thema Funktionen wird dabei zwischendurch immer wieder explizit mit einbezogen. Anschließend wird noch etwas zum Funktionsbegriff und einigen grundlegenden Funktionsarten, so wie sie in der Sekundarstufe 1 vorkommen, gesagt. Dabei wird der Fokus insbesondere auf die Begriffe Proportionalität und Antiproportionalität gelegt und einige Eigenschaften unter einem fachwissenschaftlichen Aspekt betrachtet. In dem umfangreichen Kapitel 4 geht es um den Mathematikunterricht. Darin werden viele Möglichkeiten und Beispiele genannt, die Lehrern und vor allem den Schülern von Nutzen sein können, da sie Nachhaltigkeit beim Verständnis des Funktionsbegriffs zu versprechen vermögen. Das fächerübergreifende Unterrichten (mit der Physik), d.h. die Behandlung außermathematischer Problemstellungen, wird ebenso Inhalt sein wie innermathematische Sachverhalte im Umgang mit Funktionen.
Die bei uns gelisteten Preise basieren auf Angaben der gelisteten Händler zum Zeitpunkt unserer Datenabfrage. Diese erfolgt einmal täglich. Von diesem Zeitpunkt bis jetzt können sich die Preise bei den einzelnen Händlern jedoch geändert haben. Bitte prüfen sie auf der Zielseite die endgültigen Preise.
Die Sortierung auf unserer Seite erfolgt nach dem besten Preis oder nach bester Relevanz für Suchbegriffe (je nach Auswahl).
Für manche Artikel bekommen wir beim Kauf über die verlinkte Seite eine Provision gezahlt. Ob es eine Provision gibt und wie hoch diese ausfällt, hat keinen Einfluß auf die Suchergebnisse oder deren Sortierung.
Unser Preisvergleich listet nicht alle Onlineshops. Möglicherweise gibt es auf anderen bei uns nicht gelisteten Shops günstigere Preise oder eine andere Auswahl an Angeboten.
Versandkosten sind in den angezeigten Preisen und der Sortierung nicht inkludiert.
* - Angaben ohne Gewähr. Preise und Versandkosten können sich zwischenzeitlich geändert haben. Bitte prüfen sie vor dem Kauf auf der jeweiligen Seite, ob die Preise sowie Versandkosten noch aktuell sind.